438 research outputs found

    CD4+ cytolytic effectors are inefficient in the clearance of Listeria monocytogenes

    Get PDF
    Cytotoxic T lymphocytes (CTL) recognize and lyse target cells through the interaction of the T-cell receptor complex with the class I or class II major histocompatibility complex (MHC). The production of class I-restricted CTL has been shown to be critical to the elimination of specific pathogens including . However, the function of class II-restricted CTL in the clearance of intracellular pathogens is poorly understood. H-2β-microglobulin-deficient mice (βM−/−) are not able to produce CD8 CTL in response to infection with . We used this model to evaluate the efficacy of class II-restricted CTL, in the absence of a class I-restricted response, during a primary infection with . We demonstrate that, despite their effectiveness in adoptive transfer of protection, -specific CD4 class II-restricted cytotoxic lymphocytes are ineffective in decreasing titres of in the spleen after an established infection. In βM−/− mice, persistence of in the spleen was found preferentially in class II-negative cells. Surprisingly, class I-restricted CTL from C57BL/6 mice were capable of decreasing bacterial titres during an established infection even in the absence of detectable class I on the surface of cells from βM−/− mice. These data strongly suggest that, in the absence of a class I-restricted response, pathogens that elicit a class II-restricted cytotoxic response may escape prompt eradication by the immune system

    Using the emerging Collaborative Cross to probe the immune system

    Get PDF
    The Collaborative Cross (CC) is an emerging panel of recombinant inbred mouse strains. Each strain is genetically distinct but all descended from the same eight inbred founders. In 66 strains from incipient lines of the CC (pre-CC), as well as the 8 CC founders and some of their F1 offspring, we examined subsets of lymphocytes and antigen-presenting cells. We found significant variation among the founders, with even greater diversity in the pre-CC. Genome-wide association using inferred haplotypes detected highly significant loci controlling B-to-T cell ratio, CD8 T-cell numbers, CD11c and CD23 expression. Comparison of overall strain effects in the CC founders with strain effects at QTL in the pre-CC revealed sharp contrasts in the genetic architecture of two traits with significant loci: variation in CD23 can be explained largely by additive genetics at one locus, whereas variation in B-to-T ratio has a more complex etiology. For CD23, we found a strong QTL whose confidence interval contained the CD23 structural gene Fcer2a. Our data on the pre-CC demonstrate the utility of the CC for studying immunophenotypes and the value of integrating founder, CC, and F1 data. The extreme immunophenotypes observed could have pleiotropic effects in other CC experiments

    Widespread transcription of a Qa region gene in adult mice

    Get PDF
    The mouse MHC class I family includes genes encoded in four regions: H- 2K, H-2D, Qa and Tla. While K/D genes are well characterized, relatively little is known about Qa or Tla genes. We have studied the transcription of a B10.P Qa region gene. DNA sequence comparisons of the transmembrane region, supported by Southern blot analysis of cosmid and genomic DNAs from BALB/c and C57BL/10, demonstrate the lambda 3a gene corresponds to Q4p. In both Northern blots and RNA protection experiments using probes derived from the 3' noncoding region, we found that Q4, like the H-2K and H-2D genes, is widely transcribed in B10.P tissues. These data demonstrate for the first time widespread transcription of a Qa gene

    Evidence for extensive polymorphism of class I genes in the rat major histocompatibility complex (RT1).

    Get PDF
    The major histocompatibility complex of the rat (RT1) has been poorly characterized with respect to the number, linkage, and polymorphism of class I genes. To estimate the number of class I RT1 genes and the relative extent of their polymorphism, we performed Southern blot analysis with liver DNA from rat strains expressing eight RT1 haplotypes. After digestion with EcoR1 and BamHI, the DNA was separated on agarose gels, blotted onto nitrocellulose, and hybridized with mouse H-2 cDNA probes, pH-2III and pH-2IIa. Ten to 20 EcoRI and 13 to 20 BamHI bands hybridized with pH-2III and pH-2IIa; restriction fragment length patterns were observed to be highly polymorphic. The restriction fragments associated with different RT1 haplotypes differed by 17-70%; this range is similar to the differences observed between mouse H-2 haplotypes. The same restriction fragment pattern was observed in DNA from three different rat strains sharing the same RT1 allele, confirming that the patterns were RT1-associated. Further, the RT11 and RT11v1 haplotypes, which differ at a single previously identified RT1-linked locus, were associated with EcoRI restriction pattern differences of 39-50%, confirming the supposition that RT1 class I genes identified by previous serological and T-cell-mediated assays have identified only a minority of the actual number of RT1-linked class I genes. In summary, the results reported in this communication demonstrate that the RT1 complex encompasses a large family of highly polymorphic class I genes similar to the H-2 and HL-A complexes of mouse and man

    Identification and visualization of multidimensional antigen-specific T-cell populations in polychromatic cytometry data.

    Get PDF
    An important aspect of immune monitoring for vaccine development, clinical trials, and research is the detection, measurement, and comparison of antigen-specific T-cells from subject samples under different conditions. Antigen-specific T-cells compose a very small fraction of total T-cells. Developments in cytometry technology over the past five years have enabled the measurement of single-cells in a multivariate and high-throughput manner. This growth in both dimensionality and quantity of data continues to pose a challenge for effective identification and visualization of rare cell subsets, such as antigen-specific T-cells. Dimension reduction and feature extraction play pivotal role in both identifying and visualizing cell populations of interest in large, multi-dimensional cytometry datasets. However, the automated identification and visualization of rare, high-dimensional cell subsets remains challenging. Here we demonstrate how a systematic and integrated approach combining targeted feature extraction with dimension reduction can be used to identify and visualize biological differences in rare, antigen-specific cell populations. By using OpenCyto to perform semi-automated gating and features extraction of flow cytometry data, followed by dimensionality reduction with t-SNE we are able to identify polyfunctional subpopulations of antigen-specific T-cells and visualize treatment-specific differences between them

    Alteration of tumour response to radiation by interleukin-2 gene transfer

    Get PDF
    We have previously shown that BALB/c-derived EMT6 mammary tumours transfected with interleukin (IL)-2 have decreased hypoxia compared to parental tumours, due to increased vascularization. Since hypoxia is a critical factor in the response of tumours to radiation treatment, we compared the radiation response of IL-2-transfected tumours to that of parental EMT6 tumours. Because the IL-2 tumours have an altered host cell composition, which could affect the interpretation of radiation sensitivity as measured by clonogenic cells, we employed flow cytometric analysis to determine the proportion of tumour cells vs host cells in each tumour type. Using this approach, we were able to correct the plating efficiency based on the number of actual tumour cells derived from tumours, making the comparison of the two types of tumours possible. We also excluded the possibility that cytotoxic T-cells present in EMT6/IL-2 tumours could influence the outcome of the clonogenic cell survival assay, by demonstrating that the plating efficiency of cells derived from EMT6/IL-2 tumours remained unchanged after depletion of Thy-1+cells. The in vivo radiation response results demonstrated that IL-2-transfected tumours were more sensitive to radiation than parental EMT6 tumours. The hypoxic fraction of the EMT6/IL-2 tumours growing in vivo was markedly decreased relative to parental EMT6 tumours thus the increased sensitivity results from the increased vascularity we have previously observed in these tumours. These results indicate the potential therapeutic benefit of combining radiation and immunotherapy in the treatment of tumours. © 2000 Cancer Research Campaig

    Amino-terminal alteration of the HLA-A*0201-restricted human immunodeficiency virus pol peptide increases complex stability and in vitro immunogenicity

    Get PDF
    Initial studies suggested that major histocompatibility complex class I- restricted viral epitopes could he predicted by the presence of particular residues termed anchors. However, recent studies showed that nonanchor positions of the epitopes are also significant for class I binding and recognition by cytotoxic T lymphocytes (CTLs). We investigated if changing nonanchor amino acids could increase class I affinity, complex stability, and T-cell recognition of a natural viral epitope. This concept was tested by using the HLA-A*0201-restricted human immunodeficiency virus type I epitope from reverse transcriptase (pol). Position 1 (P1) amino acid substitutions were emphasized because P1 alterations may not alter the T-cell receptor interaction. The peptide with the P1 substitution of tyrosine for isoleucine (I1Y) showed a binding affinity for HLA-A*0201 similar to that of the wild- type pol peptide in a cell lysate assembly assay. Surprisingly, I1Y significantly increased the HLA-A*0201-peptide complex stability at the cell surface. I1Y sensitized HLA-A*0201-expressing target cells for wild-type pol-specific CTL lysis as well as wild-type pol. Peripheral blood lymphocytes from three HLA-A2 HIV-seropositive individuals were stimulated in vitro with I1Y and wild-type pol. I1Y stimulated a higher wild-type pol-specific CTL response than wild-type pol in all three donors. Thus, I1V may be an 'improved' epitope for use as a CTL-based human immunodeficiency virus vaccine component. The design of improved epitopes has important ramifications for prophylaxis and therapeutic vaccine development

    The Structural Basis for the Increased Immunogenicity of Two HIV-Reverse Transcriptase Peptide Variant/Class I Major Histocompatibility Complexes

    Get PDF
    Designing altered peptide ligands to generate specific immunological reactivity when bound to class I major histocompatibility complexes is important for both therapeutic and prophylactic reasons. We have previously shown that two altered peptides, derived from human immunodeficiency virus (HIV)-reverse transcriptase (RT) residues 309-317, are more immunogenic in vitro than the wild-type peptide. One peptide variant, I1Y, was able to stimulate RT-specific cytotoxic T cells from the blood of three HIV-infected individuals better than the wild-type RT peptide. Both I1Y and I1F peptide variants increase the cell surface half-life of the peptide-class I complex approximately 3-fold over that of the RT peptide but have different immunological activities. These peptides are candidates for the design of vaccines for HIV due to their increased immunogenicity. To understand the basis for the increased cell surface stability compared with wild-type peptide and to understand the differences in T cell recognition between I1Y and I1F, we determined the x-ray crystal structures of the two class I MHC-peptide complexes. These structures indicate that the increased cell surface half-life is due to pi-pi stacking interactions between Trp-167 of HLA-A2.1 and the aromatic P1 residues of I1F and I1Y. Comparison of the structures and modeling potential T cell receptor (TCR) interactions suggests that T cell interactions and immunogenicity are different between I1Y and I1F for two reasons. First, subtle changes in the steric and polar properties of the I1Y peptide affect TCR engagement. Second, water-mediated hydrogen bond interactions between the P1-Tyr and the P4-Glu peptide residues increase peptide side chain rigidity of residues critical for TCR engagement

    Virus-specific, CD8+ major histocompatibility complex class I-restricted cytotoxic T lymphocytes in lymphocytic choriomeningitis virus-infected beta2-microglobulin-deficient mice.

    Get PDF
    Following infection with lymphocytic choriomeningitis virus (LCMV), normal adult mice generate virus-specific, major histocompatibility complex (MHC) class I-restricted cytotoxic T lymphocytes (CTL) which clear the virus after intraperitoneal infection or cause death following intracranial (i.c.) infection. We have investigated the response of beta2-microglobulin-deficient (beta2m-) mice of the H-2d haplotype (KOD mice) to LCMV infection. Unlike H-2b beta2m- mice, which generate CD4+ MHC class II-restricted CTL in response to LCMV, KOD mice generate high levels of CD8+ MHC class I-restricted, virus-specific CTL. These CTL are specific for the LCMV nucleoprotein epitope (residues 118 to 126) in association with the Ld class I molecule, analogous to the CTL response in wild-type mice. KOD mice are also susceptible to lethal LCM disease, with 75 to 80% of the mice dying 7 to 9 days following i.c. infection with virus. Similar to results with normal mice, lethal LCM disease in KOD mice is prevented by in vivo depletion of CD8+ T cells prior to i.c. infection. In contrast to wild-type mice, however, KOD mice cannot control LCMV and become persistently infected. Overall, these results demonstrate that beta2m is not an absolute requirement for presentation of endogenous antigen on Ld or for induction of virus-specific Ld-restricted CTL in vivo
    corecore